We also used microarray analysis to examine transcriptomic changes under drought, identifying thousands of genes that potentially mediate drought responses in the flower, including genes encoding transcription factors that likely play crucial regulatory roles.
Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis.
Specimen part
View SamplesWe also used microarray analysis to examine transcriptomic changes under moderate drought, identifying thousends of genes that potentially mediate moderate drought responses in the flower, including genes encoding transcription factors that likely play crucial regulatory roles.
Moderate drought causes dramatic floral transcriptomic reprogramming to ensure successful reproductive development in Arabidopsis.
Specimen part
View SamplesPAD4 is overexpressed in many cancer cells. We developed PAD inhibitors that efficiently inhibit the cancer cell growth. One inhibitor YW3-56 could efficently induce cell death of triple negative breast cancer MDA-MB-231 cells.
ATF4 Gene Network Mediates Cellular Response to the Anticancer PAD Inhibitor YW3-56 in Triple-Negative Breast Cancer Cells.
Cell line, Treatment
View SamplesWe used microarray analysis to examine transcriptomic changes upon dreb1a under drought, identifying hundreds of genes that potentially function downstream of DREB1A and mediate drought responses in the flower, including genes encoding transcription factors that likely play crucial regulatory roles.
Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis.
Specimen part
View SamplesWe performed microarray to determine transcriptomic changes upon anac019-1 under drought, identifying hundreds of genes that potentially function downstream of ANAC019 and mediate drought responses in the flower, including genes encoding transcription factors that likely play crucial regulatory roles.
ANAC019 is required for recovery of reproductive development under drought stress in Arabidopsis.
Specimen part
View SamplesVitamin A (retinol) is an essential precursor for the production of retinoic acid (RA), which in turn is a major regulator of gene expression, affecting cell differentiation throughout the body. Understanding how vitamin A nutritional status, as well as therapeutic retinoid treatment, regulates the expression of retinoid homeostatic genes is important for improving dietary recommendations and therapeutic strategies using retinoids. This study investigated genes central to processes of retinoid uptake and storage, release to plasma, and oxidation in the liver of rats under steady-state conditions after different exposures to dietary vitamin A (deficient, marginal, adequate and supplemented), and acutely after administration of a therapeutic dose of all-trans-RA. Over a very wide range of dietary vitamin A, lecithin:retinol acyltransferase (LRAT) as well as multiple cytochrome P450s (CYP26A1, CYP26B1, and CYP2C22) differed by diet and were highly correlated with one another and with vitamin A status assessed by liver retinol concentration (all correlations, P<0.05). After acute treatment with RA, the same genes were rapidly and concomitantly induced, preceding RAR, a classical direct target of RA. CYP26A1 mRNA exhibited the greatest dynamic range (change of log26 in 3 h). Moreover, CYP26A1 increased more rapidly in the liver of RA-primed rats than nave rats. By in situ hybridization, CYP26A1 mRNA was strongly regulated within hepatocytes, closely resembling RBP4 in location. Overall, whether RA is produced endogenously from retinol or administered exogenously, changes in retinoid homeostatic gene expression simultaneously favor both retinol esterification and RA oxidation, with CYP26A1 exhibiting the greatest dynamic change.
Multiple cytochrome P-450 genes are concomitantly regulated by vitamin A under steady-state conditions and by retinoic acid during hepatic first-pass metabolism.
Sex, Age, Specimen part
View SamplesThe study consisted of two experiments. The hypothesis tested was that RA and tumor necrosis factor (TNF)-alpha would independently and synergistically regulate the expression of genes in THP-1 human myeloid cells, and that RA alone would be a significant modulator, as tested in a kinetic experiment.
No associated publication
Specimen part, Cell line
View SamplesVaccination reduces morbidity and mortality from pneumonia but its effect on the tissue-level response to infection is still poorly understood. We evaluated pneumonia disease progression, acute phase response and lung gene expression profiles in mice inoculated intranasally with virulent gram-positive Streptococcus pneumoniae serotype (ST) 3, with and without prior immunization with pneumococcal polysaccharide ST 3 (PPS3), or co-immunization with PPS3 and with a low dose of lipopolysaccharide (LPS). Pneumonia severity was assessed in the acute phase, 5, 12, 24 and 48 h post-inoculation (p.i.) and the resolution phase of 7 days p.i. Primary PPS3 specific antibody production was upregulated and IgM binding to pneumococci increased in PPS3-immunized mice. Immunizations with PPS3 or PPS3 + LPS decreased bacterial recovery the lung and blood at 24 and 48 h and increased survival. Microarray analysis of whole lung RNA revealed significant changes in the acute phase protein serum amyloid A (SAA) between noninfected and infected mice, which were attenuated by immunization. SAA transcripts were higher in the liver and lungs of infected controls, and SAA protein was elevated in serum, but decreased in PPS3-immunized mice. Thus, during a virulent pneumonia infection, prior immunization with PPS3 in an IgM-dependent manner as well as co-immunization with PPS3 + LPS attenuated pneumonia severity and promoted resolution of infection, concomitant with significant regulation of cytokine gene expression in the lungs, and acute phase proteins in the lungs, liver and serum.
Immunization with pneumococcal polysaccharide serotype 3 and lipopolysaccharide modulates lung and liver inflammation during a virulent Streptococcus pneumoniae infection in mice.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesEscherichia coli exhibits diauxic growth in sugar mixtures due to CRP-mediated catabolite repression and inducer exclusion related to phosphotransferase system enzyme activity. Replacement of the native crp gene with a catabolite repression mutant (referred to as crp*) alleviates diauxic effects in E. coli and enables co-utilization of glucose and other sugars. While previous studies have examined the effects of expressing CRP* mutants on the expression of specific catabolic genes, little is known about the global transcriptional effects of CRP* expression.
Transcriptional effects of CRP* expression in Escherichia coli.
No sample metadata fields
View Samplesto study the proliferation of PERK knockout mice islets.
PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis.
Sex
View Samples