Purpose: Resistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer remains a major clinical problem. Recently, the CDK4/6 inhibitor palbociclib combined with letrozole was approved for treatment of ER+ advanced breast cancer, and other CDK4/6 inhibitors are being investigated in combination with different endocrine treatments. However, the role of CDK4/6 in endocrine resistance and their potential as predictive biomarkers of endocrine treatment response remains undefined.
High CDK6 Protects Cells from Fulvestrant-Mediated Apoptosis and is a Predictor of Resistance to Fulvestrant in Estrogen Receptor-Positive Metastatic Breast Cancer.
Specimen part
View SamplesThe CD44hi compartment in human breast cancer is enriched in tumor-initiating cells, however the functional heterogeneity within this subpopulation remains poorly defined. From a human breast cancer cell line with a known bi-lineage phenotype we have isolated and cloned CD44hi populations that exhibited mesenchymal/Basal B and luminal/Basal A features, respectively:CD44+/CD24-,Basal B (G4, H6) cells and CD44hi/CD24lo epithelioid Basal A (A4, AB) cells.
No associated publication
Specimen part, Disease, Disease stage
View SamplesTo elucidate the molecular mechanisms of tamoxifen resistance in breast cancer, we performed gene array analysis and identified 366 genes with altered expression in four unique tamoxifen resistant (TamR) cell lines vs the parental tamoxifen sensitive MCF7/S0.5 cell line. Most of these genes were funcationally linked to cell proliferation, death and control gene expression, and include FYN, PRKCA, ITPR1, DPYD, DACH1, LYN, GBP1 and PRLR. Treatment with FYN specific small interfering RNA or a SRC family kinase inhibitor reduced cell growth of TamR cell lines while exerting no significant effect on MCF7/S0.5 cells. Moreover, overexpression of FYN in parental tamoxifen-sensitive MCF7/S0.5 cells resulted in reduced sensitivity to tamoxifen, demonstrating growth and survival promoting function of FYN in MCF7 cells. FYN knockdown in TamR cells led to reduced phosphorylation of 14-3-3 and CDc 25A, suggesting that FYN, by activation of of important cell cycle-associated proteins, may overcome the anti-proliferative effects of tamoxifen. Evaluation of the subcellular localization of FYN in primary breast tumors from two cohorts of endocrine-treated ER+ breast cancer patients, one with advanced disease (N = 47) and the other with early disease (N = 76), showed that in the former, plasma membrane-associated FYN expression strongly correlated with longer progression-free survival (P<0.0002). Similarly, in early breast cancer patients, membrane-associated expression of FYN in the primary breast tumor was significantly associated with increased metastasis-free (P<0.04) and overall (P<0.004) survival independent of tumor size, grade or lymph node status. Our results indicate that FYN has an important role in tamoxifen resistance, and its subcellular localization in breast tumor cells may be an important novel biomarker of response to endocrine therapy in breast cancer.
Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy.
Specimen part, Cell line
View SamplesThe CD44hi compartment in human breast cancer is enriched in tumor-initiating cells, however the functional heterogeneity within this subpopulation remains poorly defined. From a human breast cancer cell line with a known bi-lineage phenotype we have isolated and cloned two CD44hi populations that exhibited mesenchymal/Basal B and luminal/Basal A features, respectively. Rather than CD44+/CD24-,Basal B (G4) cells, only CD44hi/CD24lo, epithelioid Basal A (A4) cells retained a tumor-initiating capacity in NOG mice, form mammospheres and exhibit resistance to standard chemotherapy.
Functional heterogeneity within the CD44 high human breast cancer stem cell-like compartment reveals a gene signature predictive of distant metastasis.
Specimen part, Disease, Disease stage
View SamplesDuring fasting, increases in circulating pancreatic glucagon maintain glucose balance by up-regulating hepatic gluconeogenesis. Triggering of the cAMP pathway stimulates the gluconeogenic program through the phosphorylation of CREB and via the de-phosphorylation of the CREB coactivator CRTC2. Hormonal and nutrient signals are also thought to modulate gluconeogenic genes by promoting epigenetic changes that facilitate assembly of the transcriptional machinery, although the nature of these modifications is unclear. Here we show that histone H3 acetylation at Lys 9 (H3K9Ac) is elevated over gluconeogenic genes during fasting and in diabetes, where it contributes to increases in hepatic glucose production. Following its dephosphorylation, CRTC2 promoted increases in H3K9Ac by mediating the recruitment of the lysine acetyltransferase 2B (KAT2B) and WD repeat-containing protein 5 (WDR5), a core subunit of histone methyltransferase (HMT) complexes. In turn, KAT2B and WDR5 stimulated the gluconeogenic program through a self-reinforcing cycle whereby increases in H3K9Ac further potentiated CRTC2 occupancy at CREB binding sites. Breaking this cycle, by depletion of KAT2B or WDR5, decreased gluconeogenic gene expression. As administration of a small molecule KAT2B antagonist lowered circulating blood glucose concentrations in insulin resistance, our results demonstrate how this enzyme may be a useful target for diabetes treatment.
Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects.
Sex, Age, Specimen part
View SamplesWe have previously shown that adenoviral expression of peroxisome proliferator-activated receptors (PPARs) leads to rapid establishment of transcriptionally active complexes and activation of target gene expression within 5-8 h following transduction. Here we have used the adenoviral delivery system combined with expression array analysis to identify novel putative PPARgamma target genes in murine fibroblasts and to determine the role of the A/B-domain in PPARgamma mediated transactivation of genomic target genes. Of the 257 genes found to be induced by PPARgamma2 expression, only 25 displayed A/B-domain dependency, i.e. significantly reduced induction in the cells expressing the truncated PPARgamma lacking the A/B-domain (PPARgammaCDE). Nine of the 25 A/B-domain dependent genes were involved in lipid storage and in line with this, triglyceride accumulation was considerably decreased in the cells expressing PPARgammaCDE compared to cells expressing full length PPARgamma2. Using chromatin immunoprecipitation (ChIP) we demonstrate that PPARgamma binding to genomic target sites and recruitment of the mediator component TRAP220/MED1/PBP/DRIP205 is not affected by the deletion of the A/B-domain. By contrast, the PPARgamma-mediated CBP and p300 recruitment to A/B-domain dependent target genes is abolished by deletion of the A/B-domain. These results indicate that the A/B-domain of PPARgamma2 is specifically involved in the recruitment or stabilization of CBP and p300 containing co-factor complexes to a subset of target genes.
No associated publication
Cell line
View SamplesThe ACBP knockout were created by targeted disruption of the gene in mice. The expression profiling was performed on liver tissue from ACBP-/- (KO) and +/+ (WT) mice at the age of 21 days, which in our study is the time immediately before weaning. The mice used for this experiment were taken directly away from their mother. Thus, having free access to chow and breast milk until sacrificed at 8-11am
Disruption of the acyl-CoA-binding protein gene delays hepatic adaptation to metabolic changes at weaning.
Specimen part
View SamplesThe level of reactivity in pre-sensitized individuals following repeated epicutaneous challenges with diphenylcyclopropenone (DPCP) remains unknown. We studied the kinetics and time-course of the developing reactivity to this potent contact sensitizer using genome-wide gene expression data
No associated publication
Specimen part
View SamplesParkinsons disease (PD) progresses relentlessly and affects five million people worldwide. Laboratory tests for PD are critically needed for developing treatments designed to slow or prevent progression of the disease. We performed a transcriptome-wide scan in 105 individuals to interrogate the molecular processes perturbed in cellular blood of patients with early-stage PD. The molecular marker here identified is strongly associated with risk of PD in 66 samples of the training set (third tertile cross-validated odds ratio of 5.7 {P for trend 0.005}). It is further validated in 39 independent test samples (third tertile odds ratio of 5.1 {P for trend 0.04}). The genes differentially expressed in patients with PD, or Alzheimers or progressive supranuclear palsy offer unique insights into disease-linked processes detectable in peripheral blood. Combining gene expression scans in blood and linked clinical data will facilitate the rapid characterization of candidate biomarkers as demonstrated here with respect to PD.
Molecular markers of early Parkinson's disease based on gene expression in blood.
No sample metadata fields
View SamplesEvidence suggests that BRCA1 mutation associated tumors have increased sensitivity to DNA damaging agents like cisplatin. Sporadic triple negative breast cancers (TNBC) have many phenotypic similarities to BRCA1 tumors and may have a similar sensitivity to cisplatin. We tested the efficacy of cisplatin monotherapy in 28 TNBC patients in a single arm neoadjuvant trial with outcome measured by pathologic treatment response quantified using the Miller-Payne scale.
Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer.
Age, Disease stage
View Samples