refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14991 results
Sort by

Filters

Technology

Platform

accession-icon GSE38822
Gene expression profiling of experimental granulation tissue in Mmp13-/- mice compared to wild type mice
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Proteinases play a pivotal role in wound healing by degrading molecular barriers, regulating cell-matrix interactions and availability of bioactive molecules. Matrix metalloproteinase-13 (MMP-13, collagenase-3) is a wide spectrum proteinase. Its expression and function is linked to the growth and invasion of many epithelial cancers such as squamous cell carcinoma. Moreover, the physiologic expression of MMP-13 is associated e.g. to scarless healing of human fetal skin and adult gingival wounds. While MMP-13 is not found in the normally healing skin wounds in human adults, it is expressed in mouse skin during wound healing. Thus, mouse wound healing models can be utilized for studying the role of MMP-13 in the events of wound healing. As the processes such as the migration and proliferation of keratinocytes, angiogenesis, inflammation and activation of fibroblasts are components of wound repair as well as of cancer, many results received from wound healing studies are also adaptable to cancer research.

Publication Title

MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability.

Sample Metadata Fields

Time

View Samples
accession-icon GSE34652
KGF effects on cutaneous SCC cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin.

Publication Title

Keratinocyte growth factor induces gene expression signature associated with suppression of malignant phenotype of cutaneous squamous carcinoma cells.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE30211
Gene expression changes during Type 1 diabetes pathogenesis
  • organism-icon Homo sapiens
  • sample-icon 724 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip, Affymetrix Human Genome U219 Array (hgu219)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE43488
Genome-wide expression kinetics of children with Type 1 diabetes (T1D) -associated autoantibodies or progression towards clinical T1D, compared to healthy matched controls .
  • organism-icon Homo sapiens
  • sample-icon 356 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip, Affymetrix Human Genome U219 Array (hgu219)

Description

To unravel genes and molecular pathways involved in the pathogenesis of type 1 diabetes (T1D), we performed genome-wide gene expression profiling of prospective venous blood samples from children developing T1D-associated autoantibodies or progressing towards clinical diagnosis.

Publication Title

Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE30210
Genome-wide espression kinetics of children progressing to clinical Type 1 diabetes (T1D).
  • organism-icon Homo sapiens
  • sample-icon 247 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

To unravel genes and molecular pathways involved in the pathogenesis of type 1 diabetes (T1D), we performed genome-wide gene expression profiling of prospective venous blood samples from children developing T1D-associated autoantibodies or progressing towards clinical diagnosis.

Publication Title

Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE39444
Nanotoxicogenomic study of ZnO and TiO2 responses
  • organism-icon Homo sapiens
  • sample-icon 161 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip, Affymetrix Human Genome U219 Array (hgu219)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE18017
Stat6 mediated regulation of transcription to initiate Th2 program in human T cells
  • organism-icon Homo sapiens
  • sample-icon 111 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Illumina human-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE92530
Genome-wide gene expression analysis of BQ.Ncf1m1J mutated and BQ wild type mice during collagen induced arthritis
  • organism-icon Mus musculus
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Whole blood and spleen tissue was collected 15 (d15) or 44 (d44) days postimmunization from mice immunized with type II collagen on day 0 and immunostimulated on day 21.

Publication Title

Reactive Oxygen Species Regulate Both Priming and Established Arthritis, but with Different Mechanisms.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE39316
Nanotoxicogenomic study of ZnO and TiO2 responses (Illumina)
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and T cell leukemia-derived cell line (Jurkat). TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify signaling pathways underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses, 1g/ml and 10g/ml after 6 and 24 hours of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10g/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that the gene expression of metallothioneins was upregulated in all the three cell types. In addition to the common ZnO-inducible changes, a notable proportion of the genes were regulated in a cell type-specific manner. Using a panel of ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is caused by particle dissolution. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Bioinformatics assessment showed that the top human disease category associated with ZnO-responsive genes in both HMDM and Jurkat cells was cancer. Overall, the study revealed novel genes and pathways for mediating ZnO nanoparticle-induced toxicity and demonstrated the value of assessing nanoparticle responses through combined transcriptomics and bioinformatics approach.

Publication Title

Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE39330
Nanotoxicogenomic study of ZnO and TiO2 responses (Affymetrix)
  • organism-icon Homo sapiens
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and T cell leukemia-derived cell line (Jurkat). TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify signaling pathways underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses, 1ug/ml and 10ug/ml after 6 and 24 hours of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10ug/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that the gene expression of metallothioneins was upregulated in all the three cell types. In addition to the common ZnO-inducible changes, a notable proportion of the genes were regulated in a cell type-specific manner. Using a panel of ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is caused by particle dissolution. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Bioinformatics assessment showed that the top human disease category associated with ZnO-responsive genes in both HMDM and Jurkat cells was cancer. Overall, the study revealed novel genes and pathways for mediating ZnO nanoparticle-induced toxicity and demonstrated the value of assessing nanoparticle responses through combined transcriptomics and bioinformatics approach.

Publication Title

Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.

Sample Metadata Fields

Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact