Proteinases play a pivotal role in wound healing by degrading molecular barriers, regulating cell-matrix interactions and availability of bioactive molecules. Matrix metalloproteinase-13 (MMP-13, collagenase-3) is a wide spectrum proteinase. Its expression and function is linked to the growth and invasion of many epithelial cancers such as squamous cell carcinoma. Moreover, the physiologic expression of MMP-13 is associated e.g. to scarless healing of human fetal skin and adult gingival wounds. While MMP-13 is not found in the normally healing skin wounds in human adults, it is expressed in mouse skin during wound healing. Thus, mouse wound healing models can be utilized for studying the role of MMP-13 in the events of wound healing. As the processes such as the migration and proliferation of keratinocytes, angiogenesis, inflammation and activation of fibroblasts are components of wound repair as well as of cancer, many results received from wound healing studies are also adaptable to cancer research.
MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability.
Time
View SamplesKeratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin.
Keratinocyte growth factor induces gene expression signature associated with suppression of malignant phenotype of cutaneous squamous carcinoma cells.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesTo unravel genes and molecular pathways involved in the pathogenesis of type 1 diabetes (T1D), we performed genome-wide gene expression profiling of prospective venous blood samples from children developing T1D-associated autoantibodies or progressing towards clinical diagnosis.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesTo unravel genes and molecular pathways involved in the pathogenesis of type 1 diabetes (T1D), we performed genome-wide gene expression profiling of prospective venous blood samples from children developing T1D-associated autoantibodies or progressing towards clinical diagnosis.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.
Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming.
Specimen part
View SamplesWhole blood and spleen tissue was collected 15 (d15) or 44 (d44) days postimmunization from mice immunized with type II collagen on day 0 and immunostimulated on day 21.
Reactive Oxygen Species Regulate Both Priming and Established Arthritis, but with Different Mechanisms.
Sex, Specimen part
View SamplesA comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and T cell leukemia-derived cell line (Jurkat). TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify signaling pathways underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses, 1g/ml and 10g/ml after 6 and 24 hours of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10g/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that the gene expression of metallothioneins was upregulated in all the three cell types. In addition to the common ZnO-inducible changes, a notable proportion of the genes were regulated in a cell type-specific manner. Using a panel of ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is caused by particle dissolution. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Bioinformatics assessment showed that the top human disease category associated with ZnO-responsive genes in both HMDM and Jurkat cells was cancer. Overall, the study revealed novel genes and pathways for mediating ZnO nanoparticle-induced toxicity and demonstrated the value of assessing nanoparticle responses through combined transcriptomics and bioinformatics approach.
Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.
Specimen part, Treatment, Time
View SamplesA comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and T cell leukemia-derived cell line (Jurkat). TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify signaling pathways underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses, 1ug/ml and 10ug/ml after 6 and 24 hours of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10ug/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that the gene expression of metallothioneins was upregulated in all the three cell types. In addition to the common ZnO-inducible changes, a notable proportion of the genes were regulated in a cell type-specific manner. Using a panel of ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is caused by particle dissolution. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Bioinformatics assessment showed that the top human disease category associated with ZnO-responsive genes in both HMDM and Jurkat cells was cancer. Overall, the study revealed novel genes and pathways for mediating ZnO nanoparticle-induced toxicity and demonstrated the value of assessing nanoparticle responses through combined transcriptomics and bioinformatics approach.
Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.
Treatment, Time
View Samples