Intratumoral heterogeneity may generate a diversity of resistance mechanisms that could cause different therapeutic responses in different cell populations.
Breast cancer cells respond differentially to modulation of TGFβ2 signaling after exposure to chemotherapy or hypoxia.
Cell line
View SamplesTo understand the effects of glutamine deprivation on cell physiology we performed global analysis of gene expression in response to glutamine deprivation.
Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells.
Specimen part
View SamplesInduced pluripotent stem cells (iPSCs) can be generated by enforced expression of defined transcription factors in somatic cells. It remains controversial whether iPSCs are equivalent to blastocyst-derived embryonic stem cells (ESCs). Using genetically matched cells, we found that the overall mRNA expression patterns of these cell types are indistinguishable with the exception of a few transcripts encoded on chromosome 12qF1.
Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells.
Specimen part
View SamplesPluripotent cells can be derived from somatic cells by either overexpression of defined transcription factors (resulting in induced pluripotent stem cells (iPSCs)) or by nuclear transfer or cloning (resulting in NT-ESCs). To determine whether cloning further reprograms iPSCs, we used iPSCs as donor cells in nuclear transfer experiments.
Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells.
Specimen part
View SamplesOlfaction is fundamental for survival but there is little known about the connection between smell perception and metabolism. In this study we implemented IGF1R knockout mice in the olfactory sensory neurons, by olfactory marker protetin (OMP) Cre specific recombination, and investigated metabolic parameters, smell perception and transcriptome sequencing. We could demonstrate that IGF1R knockout in the olfactory sensory neurons results in enhanced smell perception, insulin resistance under normal chow diet conditions and increased adiposity in mice fed control diet. Transcriptome analysis of the olfactory epithelium revealed differential expression of markers for mature and immature olfactory sensory neurons, being down-regulated and up- regulated respectively, pointing to differentiation-dependent changes that result in increased olfactory perception. Collectively, this study provides evidence that enhanced smell perception can result in insulin resistance and increased adiposity. Overall design: mRNA profiles of olfactory sensory neurons (OSN) extracted from homozygous tissue-specific IGF1R knockout (OMPIGF1R) and respective cotnrol mice (OMPflfl) were generated by deep sequencing, in four replicates using Illumina sequencing
The Sense of Smell Impacts Metabolic Health and Obesity.
Age, Cell line, Subject
View SamplesUnderstanding the biological potential of fetal stem/progenitor cells will help define mechanisms in liver development and homeostasis. We isolated epithelial fetal human liver cells and established phenotype-specific changes in gene expression during continuous culture conditions. Fetal human liver epithelial cells displayed stem cell properties with multilineage gene expression, extensive proliferation and generation of mesenchymal lineage cells, although the initial epithelial phenotype was rapidly supplanted by meso-endodermal phenotype in culture. This meso-endodermal phenotype was genetically regulated through cytokine signaling, including transforming growth factor-b, bone morphogenetic protein, fibroblast growth factors, and other signaling pathways. Reactivation of HNF-3a (FOXA1) transcription factor, a driver of hepatic specification in the primitive endoderm, indicated that the meso-endodermal phenotype represented an earlier developmental stage of cells. We found that fetal liver epithelial cells formed mature hepatocytes in vivo, including after genetic manipulation using lentiviral vectors, offering convenient assays for analysis of further cell differentiation and fate. Taken together, these studies demonstrated plasticity in fetal liver epithelial stem/progenitor cells, offered paradigms for defining mechanisms regulating lineage switching in stem/progenitor cells, and provided potential avenues for regulating cell phenotypes for applications of stem/progenitor cells, such as for cell therapy.
Phenotype reversion in fetal human liver epithelial cells identifies the role of an intermediate meso-endodermal stage before hepatic maturation.
Specimen part
View SamplesEpidemiological data show that the immune system may control or promote emergence and growth of a neoplastic lymphomatous clone. Conversely, systemic lymphomas, especially myeloma and CLL, are associated with clinical immunodeficiency. This prospective controlled study demonstrates substantially reduced circulating T helper cells, predominantly naive CD4+ cells, in patients with non-leukemic follicular and extranodal marginal zone lymphomas, but not in monoclonal gammopathy and early CLL. These numerical changes were correlated with a preactivated phenotype, hyperreactivity in vitro, presenescence, and a Th2 shift of peripheral T helper cells. No prominent alterations were found in the regulatory T cell compartment. Gene expression profiling of in vitro-stimulated CD4+ cells revealed an independent second alteration of T helper cell physiology which was most pronounced in early CLL but also detectable in FL/eMZL. This pattern consisted of downregulation of proximal and intermediate T-cell receptor signaling cascades and globally reduced cytokine secretion. Both types of T cell dysfunction may contribute to significant immunodeficiency in non-leukemic indolent B-cell lymphomas as demonstrated by refractoriness to hepatitis B vaccination. The precise definition of systemic T cell dysfunction serves as the basis to study its prognostic impact, its relationship to the established influence of the lymphoma microenvironment, and its therapeutic manipulation
Definition and characterization of the systemic T-cell dysregulation in untreated indolent B-cell lymphoma and very early CLL.
Specimen part, Disease, Disease stage
View SamplesThis study was undertaken to test the hypothesis that short term exposure (4 hours) to physiologic hyperinsulinemia in normal, healthy subjects without a family history of diabetes would induce a low grade inflammatory response, independently of glycemic status. We performed euglycemic hyperinsulinemic (80 mU/m2/min) clamps in 12 healthy, insulin sensitive subjects with no family history of diabetes followed by biopsies of the vastus lateralis muscle taken basally and after 30 and 240 minutes of insulin infusion. Gene expression profiles were generated using Affymetrix HG-U133A arrays. No probe sets had significantly altered expression at 30 minutes of the insulin clamp, but 121 probe sets (117 upregulated and 4 downregulated) were significantly altered after 240 minutes. Hyperinsulinemia in normal, healthy human subjects increased the mRNAs for a number of inflammatory genes and transcription factors. Microarray and quantitative RT-PCR revealed the upregulation of chemokine, cc motif, ligand 2 (CCL2), CCL8, thrombomodulin (THBD), ras-related associated with diabetes (RRAD), metallothionein (MT), and serum/glucocorticoid regulated kinase (SGK), and downregulation of CITED2 (a CREB-binding protein-interacting transactivator), a known coactivator of PPAR-alpha. Interestingly, SGK and CITED2 are located at chromosome 6q23, where we previously detected strong linkage to hyperinsulinemia. A control saline infusion performed on 3 normal, healthy subjects without a family history of diabetes demonstrated that the genes altered following the euglycemic-hyperinsulinemic clamp were due to insulin and independent of biopsy removal. This study demonstrates that insulin acutely regulates the expression of genes involved in inflammation and transcription, and identifies several candidate genes/pathways for further investigation.
Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo.
Sex, Race
View SamplesSmall molecule inhibitors of the bromodomain and extraterminal (BET) family of proteins are in clinical trials for a variety of cancers, but patient selection strategies are limited. This is due in part to the heterogeneity of response following BET inhibition (BETi), which includes differentiation, senescence, and cell death in subsets of cancer cell lines. To elucidate the dominant features defining response to BETi, we carried out phenotypic and gene expression analysis of both treatment naïve cell lines and engineered tolerant lines. We found that both de novo and acquired tolerance to BET inhibition are driven by the robustness of the apoptotic response and that genetic or pharmacological manipulation of the apoptotic signaling network can modify the phenotypic response to BETi. We further identify that ordered expression of the apoptotic genes BCL2, BCL2L1, and BAD significantly predicts response to BETi. Our findings highlight the role of the apoptotic network in response to BETi, providing a molecular basis for patient stratification and combination therapies. Overall design: Gene expression profiling of A375 melanoma cells or NOMO-1 AML cells treated with DMSO or the BET inhibitor, CPI203. Also, gene expression profiling of the respective derived BETi-tolerant cells treated with DMSO or CPI203.
Preclinical Anticancer Efficacy of BET Bromodomain Inhibitors Is Determined by the Apoptotic Response.
No sample metadata fields
View Samples