refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 91 results
Sort by

Filters

Technology

Platform

accession-icon SRP071085
Single cell transcriptome analysis of mouse thoracic sympathetic ganglia
  • organism-icon Mus musculus
  • sample-icon 302 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We explore the heterogeneity of mouse thoracic ganglia demonstrating the presence of an unexpected variety of cell-types and identify specialized populations of nipple- and pilo-erector muscle neurons. These neurons extend axonal projections and are born amongst other neurons during embryogenesis, but remain unspecialized until target organogenesis occurs postnatally. Target innervation and cell-type specification is coordinated by an intricate acquisition of unique combinations of growth factor receptors and the initiation of expression of concomitant ligands by the nascent erector muscles. Overall design: RNA-seq analysis of 298 single sympathetic neuronal cells from the mouse thoracic ganglion

Publication Title

Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP112900
A novel addressable 9600-microwell array single cell RNA-seq method applied on fresh mouse cortical cells and frozen human cortical nuclei
  • organism-icon Mus musculus
  • sample-icon 647 Downloadable Samples
  • Technology Badge Icon

Description

We adopted the STRT-seq [Islam et al., Nat Methods 11, 163-166 (2013)] RNA-seq technology to a 9600-well array and applied it to analyze single cells from mouse and human cortex single cells. Overall design: 2192 single cells from mouse somatosensory cortex and 2028 single nuclei from human post-mortem middle temporal gyrus cortex.

Publication Title

STRT-seq-2i: dual-index 5' single cell and nucleus RNA-seq on an addressable microwell array.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP135960
Single cell sequencing of the whole adult mouse brain
  • organism-icon Mus musculus
  • sample-icon 115 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The study aims to determine the set of transcriptional cell types that make up the mouse brain

Publication Title

Molecular Architecture of the Mouse Nervous System.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon SRP109011
Multipotent Peripheral Glial Cells Generate Neuroendocrine Cells of the Adrenal Medulla
  • organism-icon Mus musculus
  • sample-icon 768 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Cells producing adrenalin are largely derived from nerve-associated Schwann cell precursors via an intermediate progenitor “bridge” cell. We demonstrate that large numbers of chromaffin cells arise from peripheral glial stem cells, termed Schwann cell precursors (SCPs) Overall design: SCPs migrate along the visceral motor nerve to the vicinity of the forming adrenal gland where they detach from the nerve and form post-synaptic neuroendocrine chromaffin cells. An intricate molecular logic drives two sequential phases of gene expression, one unique for a distinct transient cellular state and another for cell-type specification. Subsequently, these programs downregulate SCP- and upregulate chromaffin-cell-gene networks. The adrenal medulla forms through limited cell expansion and requires the recruitment of numerous SCPs. Thus, peripheral nerves serve as a stem cell niche for neuroendocrine system development.

Publication Title

RNA velocity of single cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP150534
Metabolic labeling of Hek293 cells using 4-thiouracil
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Hek293 cells were metabolically labelled using 4-thiouracil as described in (Schwalb et al, Science. 2016 Jun 3;352(6290):1225-8) but without fragmentation, and then bulk RNA was prepared for sequencing using the STRT method (Islam et al, Genome Res. 2011 Jul;21(7):1160-7). Samples were incubated in duplicate for 5, 15 and 30 minutes and included an unlabeled control representing the steady-state expression state. Overall design: 2 samples each of 4 incubation times, 2 cDNA preparations, 2 tagmentation replicates, and 2 biological replicates

Publication Title

RNA velocity of single cells.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP066613
RNA-seq analysis of single cells of the oligodendrocyte lineage from nine distinct regions of the anterior-posterior and dorsal-ventral axis of the mouse juvenile central nervous system
  • organism-icon Mus musculus
  • sample-icon 6282 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

5069 transcriptomes of single oligodendrocyte cells from spinal cord, substantia nigra-ventral tegmental area, striatum, amygdala, hypothalamic nuclei, zona incerta, hippocampus, and somatosensory cortex of male and female mice between post-natal day 21 and 90. The study aimed at identifying diverse populations of oligodendrocytes, and revealing dynamics of oligodendrocyte maturation. Overall design: 5069 individual cells were sampled from CNS regions of mice of various strains as detailed in the protocols section

Publication Title

Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system.

Sample Metadata Fields

Sex, Cell line, Treatment, Subject

View Samples
accession-icon GSE151857
TBR-760, a Dopamine-Somatostatin Compound, Arrests Tumor Growth of Aggressive Non-Functioning Pituitary Adenomas in Mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

TBR-760 (formerly BIM-23A760) is a chimeric dopamine (DA)-somatostatin (SST) compound with potent agonist activity at both DA type 2 (D2R) and SST type 2 (SSTR2) receptors. Non-functioning pituitary adenomas (NFPAs) express both D2R and SSTR2 and, consequently, may respond to TBR-760. We utilized a mouse model with the pro-opiomelanocortin (POMC) gene knocked-out that spontaneously develops aggressive NFPAs. Both genomic microarray and DA and SST receptor mRNA expression analysis indicate that POMC KO mouse tumors and human NFPAs have similar expression profiles, establishing POMC KO mice as a valid model for study of NFPAs. Treatment with TBR-760 for 8 weeks resulted in nearly complete inhibition of established tumor growth, whereas tumors from vehicle-treated mice increased in size by 890 ± 0.7%. These results support the development of TBR-760 as a therapy for patients with NFPA.

Publication Title

TBR-760, a Dopamine-Somatostatin Compound, Arrests Growth of Aggressive Nonfunctioning Pituitary Adenomas in Mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53832
Nanog is Dispensable for the Generation of Induced Pluripotent Stem Cells
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Cellular reprogramming from somatic cells to induced pluripotent stem cells (iPSCs) can be achieved through forced expression of the transcription factors Oct4, Klf4, Sox2 and c-Myc (OKSM). These factors, in combination with environmental cues, induce a stable intrinsic pluripotency network that confers indefinite self-renewal capacity on iPSCs. In addition to Oct4 and Sox2, the homeodomain-containing transcription factor Nanog is an integral part of the pluripotency network. Although Nanog expression is not required for the maintenance of pluripotent stem cells, it has been reported to be essential for the establishment of both embryonic stem cells (ESCs) from blastocysts and iPSCs from somatic cells. Here we revisit the role of Nanog in direct reprogramming. Surprisingly, we find that Nanog is dispensable for iPSC formation under optimized culture conditions. We further document that Nanog-deficient iPSCs are transcriptionally highly similar to wild-type iPSCs and support the generation of teratomas and chimeric mice. Lastly, we provide evidence that the presence of ascorbic acid in the culture media is critical for overcoming the previously observed reprogramming block of Nanog knockout cells.

Publication Title

Nanog is dispensable for the generation of induced pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12390
A high efficiency system for the generation and study of human induced pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Direct reprogramming of human fibroblasts to a pluripotent state has been achieved through ectopic expression of the transcription factors OCT4, SOX2, and either cMYC and KLF4 or NANOG and LIN28. Little is known, however, about the mechanisms by which reprogramming occurs, which is in part limited by the low efficiency of conversion. To this end, we sought to create a doxycycline-inducible lentiviral system to convert primary human fibroblasts and keratinocytes into human induced pluripotent stem (hiPS) cells. hiPS cells generated with this system were molecularly and functionally similar to human embryonic stem (hES) cells, demonstrated by gene expression profiles, DNA methylation status, and differentiation potential. While expression of the viral transgenes was required for several weeks in fibroblasts, we found that 10 days was sufficient for the reprogramming of keratinocytes, suggesting that the kinetics of reprogramming are cell-type dependent. Using our inducible system, we developed a strategy to induce hiPS cell formation at high frequency by generating differentiated cells that contain the viral transgenes in a pattern that enables successful induction of pluripotency. Upon addition of doxycycline to differentiated hiPS-derived cells, we obtained secondary hiPS cells at a frequency at least 100-fold greater than the initial conversion. The ability to reprogram cells with high efficiency provides a unique platform to dissect the underlying molecular and biochemical processes that accompany nuclear reprogramming.

Publication Title

A high-efficiency system for the generation and study of human induced pluripotent stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57774
Small molecules facilitate rapid and synchronous iPSC generation
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) upon overexpression of OCT4, KLF4, SOX2 and c-MYC (OKSM) provides a powerful system to interrogate basic mechanisms of cell fate change. However, iPSC formation with standard methods is typically protracted and inefficient, resulting in heterogeneous cell populations. We show that exposure of OKSM-expressing cells to both ascorbic acid and a GSK3- inhibitor (AGi) facilitates more synchronous and rapid iPSC formation from several mouse cell types. AGi treatment restored the ability of refractory cell populations to yield iPSC colonies, and it attenuated the activation of developmental regulators commonly observed during the reprogramming process. Moreover, AGi supplementation gave rise to chimera-competent iPSCs after as little as 48 h of OKSM expression. Our results offer a simple modification to the reprogramming protocol, facilitating iPSC induction at unparalleled efficiencies and enabling dissection of the underlying mechanisms in more homogeneous cell populations.

Publication Title

Small molecules facilitate rapid and synchronous iPSC generation.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact