Background: Tissue regeneration and recovery in the adult body depends on self-renewal and differentiation of stem and progenitor cells. Mesenchymal stem cells (MSCs) that have the ability to differentiate into various cell types, have been isolated from the stromal fraction of virtually all tissues. However, little is known about the true identity of MSCs. MSC populations exhibit great tissue-, location- and patient-specific variation in gene expression and are heterogeneous in cell composition. Methodology/Principal findings: Our aim was to analyze the dynamics of differentiation of two closely related stromal cell types, adipose tissue-derived MSCs and dermal fibroblasts (FBs) along adipogenic, osteogenic and chondrogenic lineages using multiplex RNA-seq technology. We found that undifferentiated donor-matched MSCs and FBs are distinct populations that stay different upon differentiation into adipocytes, osteoblasts and chondrocytes. The changes in lineage-specific gene expression occur early in differentiation and persist over time in both MSCs and FBs. Further, MSCs and FBs exhibit similar dynamics of adipogenic and osteogenic differentiation but different dynamics of chondrogenic differentiation. Conclusion: Our findings suggest that stromal stem cells including adipose-derived MSCs and dermal FBs exploit different molecular mechanisms of differentiation to reach a common cell fate. The early mechanisms of differentiation are lineage-specific and are similar for adipogenic and osteogenic differentiation but are distinct for chondrogenic differentiation between MSCs and FBs. Overall design: A total of 91 samples were analyzed by multiplex RNA-seq. Samples represented replicates from two patients, two cell types and three differentiation protocols, as indicated by the sample annotation. 5 barcodes were unused, but the corresponding FASTQ files are included for completeness.
RNA-seq analysis reveals different dynamics of differentiation of human dermis- and adipose-derived stromal stem cells.
Specimen part, Treatment, Subject
View SamplesPurpose: We applied cDNA molecule counting using unique molecular identifiers combined with high-throughput sequencing to study the transcriptome of individual mouse embryonic stem cells, with spike-in controls to monitor technical performance. We further examined transcriptional noise in the embryonic stem cells. Overall design: One 96-well plate of single-stranded cDNA libraries generated from 96 single R1 mouse embryonic stem cells sequenced on two lanes, and one 96-well plate of the same libraries further amplified by 9 PCR cycles sequenced on one lane.
Quantitative single-cell RNA-seq with unique molecular identifiers.
No sample metadata fields
View SamplesWe obtained full transcriptome data from single cortical neurons after whole-cell patch-clamp recording (termed “Patch-seq”). By applying “Patch-seq” to cortical neurons, we reveal a close link between biophysical membrane properties and genes coding for neurotransmitter receptors and channels, including well-established and hitherto undescribed subtypes. Overall design: RNA sequencing was performed on a total of 83 individual cells
Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes.
No sample metadata fields
View SamplesSince the first generation of induced Pluripotent Stem cells (iPSCs), several reprogramming systems have been used to study its molecular mechanisms. However, the system of choice largely affects the reprogramming efficiency, influencing our view on the mechanisms. Here we demonstrate that reprogramming triggered by less efficient polycistronic reprogramming cassettes not only highlights Mesenchymal-Epithelial Transition (MET) as a roadblock, but also faces more severe difficulties to attain a pluripotent state even post-MET. Also, in contrast to previous findings, more efficient cassettes can reprogram both wild type and Nanog-/- fibroblasts with comparable efficiencies, routes and kinetics, rebutting previous studies that Nanog is critical for iPSC generation. We revealed that the 9 amino acids in the N-terminus of Klf4 in polycistronic reprogramming cassettes are the dominant factor causing these critical differences. Our data establishes that some reprogramming roadblocks are system-dependent, highlighting the need to pursue mechanistic studies with close attention to the systems to better understand reprogramming. Overall design: The aim of the experiment is to compare the reprogramming pathways driven by two different polycistronic cassettes (MKOS and OKMS). We have isolated cells at intermediate stages of both MKOS and OKMS reprogramming and analysed their gene expression profiles. 2N- are CD44- ICAM1-, Nanog-GFP-, 3N- are CD44- ICAM1+, Nanog-GFP-, 3N+ are CD44- ICAM1+, Nanog-GFP+, all from day 10 of reprogramming. MKOS/OKMS iPSCs are established iPSC clones, TNG an Embryonic Stem Cell line carrying a Nanog-GFP reporter published in Chambers et al. Cell, 113, 643-655, from this line TNG MKOS and OKMS Embryonic Stem Cells were generated after targeting the Sp3 locus with the MKOS or the OKMS cassette respectively,E14 a reference Embryonic Stem Cell line and MEF are Mouse Embryonic Fibroblasts either wild type or generaterd from TNG MKOS or OKMS ESCs. D6 is the D6s4B5 iPSC line published in O''Malley et al. Nature, 499, 88-91.
Reprogramming Roadblocks Are System Dependent.
No sample metadata fields
View SamplesWe explore the heterogeneity of mouse thoracic ganglia demonstrating the presence of an unexpected variety of cell-types and identify specialized populations of nipple- and pilo-erector muscle neurons. These neurons extend axonal projections and are born amongst other neurons during embryogenesis, but remain unspecialized until target organogenesis occurs postnatally. Target innervation and cell-type specification is coordinated by an intricate acquisition of unique combinations of growth factor receptors and the initiation of expression of concomitant ligands by the nascent erector muscles. Overall design: RNA-seq analysis of 298 single sympathetic neuronal cells from the mouse thoracic ganglion
Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control.
Sex, Specimen part, Subject
View SamplesIn order to investigate how electrophysiological properties vary within the Pthlh population in the dorsolateral striatum we performed PatchSeq analysis of neurons labeled in 5HT3a(EGFP) and Pvalb(cre)::RCE/tdTomato mouse lines, which included Th, Npy/Mia, Cck, and Cck/Vip expressing cells. Overall design: 98 FACS-sorted single cells isolated from the dorso-lateral striatum from either a 5ht3a-EGFP mouse line or a Lhx6-cre mouse crossed onto a R26R-tdTomato reporter mouse line
Diversity of Interneurons in the Dorsal Striatum Revealed by Single-Cell RNA Sequencing and PatchSeq.
Specimen part, Cell line, Subject
View SamplesWe adopted the STRT-seq [Islam et al., Nat Methods 11, 163-166 (2013)] RNA-seq technology to a 9600-well array and applied it to analyze single cells from mouse and human cortex single cells. Overall design: 2192 single cells from mouse somatosensory cortex and 2028 single nuclei from human post-mortem middle temporal gyrus cortex.
STRT-seq-2i: dual-index 5' single cell and nucleus RNA-seq on an addressable microwell array.
No sample metadata fields
View SamplesSorting U2OS and HeLa cells genetically modified with the Fucci System allowed us to separate cells according to cell cycle progression followed by RNA Sequencing to characterize the oscillating transcriptome in cells without the need for chemical synchronization. Overall design: HeLa cells were sorted at three timepoints, while U2OS cells were sorted at two timepoints. Each time into three groups, categorized as "G1", "S", and "G2".
Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells.
Cell line, Subject
View SamplesThe study aims to determine the set of transcriptional cell types that make up the mouse brain
Molecular Architecture of the Mouse Nervous System.
Sex, Specimen part, Cell line
View SamplesThe molecular mechanism regulating phasic corticotropin-releasing hormone (CRH) release from parvocellular neurons (PVN) remains poorly understood. Here, we find a cohort of parvocellular cells interspersed with magnocellular PVN neurons expressing secretagogin. Single-cell transcriptome analysis combined with protein interactome profiling identifies secretagogin neurons as a distinct CRH-releasing neuron population reliant on secretagogin’s Ca2+ sensor properties and protein interactions with the vesicular traffic and exocytosis release machineries to liberate this key hypothalamic releasing hormone. Overall design: single cells from the PVN region juvenile (21-28 days) mice were dissected and subject to whole transcriptome analysis
A secretagogin locus of the mammalian hypothalamus controls stress hormone release.
No sample metadata fields
View Samples