Here we studied the effects of anticonvulsant drug exposure in a human embryonic stem cell (hESC) based neuro- developmental toxicity test (hESTn). During neural differentiation the cells were exposed, for either 1 or 7 days, to non-cytotoxic concentration ranges of valproic acid (VPA) or carbamazepine (CBZ), anti-epileptic drugs known to cause neurodevelopmental toxicity.
Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay.
Time
View SamplesAbout 10% of Down syndrome (DS) infants are born with a myeloproliferative disorder (DS-TMD) that spontaneously resolves within the first few months of life. About 20-30% of these infants subsequently develop acute megakaryoblastic leukemia (DS-AMKL). In order to understand differences that may exist between fetal and bone marrow megakaryocyte progenitor cell populations we flow sorted megakaryocyte progenitor cells and performed microarray expression analysis.
Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation.
Specimen part
View SamplesAbout 10% of Down syndrome (DS) infants are born with a myeloproliferative disorder (DS-TMD) that spontaneously resolves within the first few months of life. About 20-30% of these infants subsequently develop acute megakaryoblastic leukemia (DS-AMKL). In order to understand differences that may exist between fetal and bone marrow megakaryocyte progenitor cell populations we flow sorted megakaryocyte progenitor cells and performed microarray expression analysis.
Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation.
Specimen part
View SamplesEvaluation of the role of RIP4 in lung adenocarcinoma revealed that RIP4 inhibits STAT3 signaling in vitro and in vivo. Repression of RIP4 enhanced STAT3 signaling activation in KRAS LSL/G12D/wt; p53flox/flox murine tumors. This promoted cancer dedifferentiation through ECM remodeling
RIP4 inhibits STAT3 signaling to sustain lung adenocarcinoma differentiation.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inhibitors of the Histone Methyltransferases EZH2/1 Induce a Potent Antiviral State and Suppress Infection by Diverse Viral Pathogens.
Specimen part, Cell line, Treatment, Time
View SamplesEpigenetic regulation is based upon a network of complexes that modulate the chromatin character and structure of the genome to impact gene expression, cell fate, and development. Thus, epigenetic modulators represent novel therapeutic targets to treat a range of diseases including malignancies. Infectious pathogens such as herpesviruses are also regulated by cellular epigenetic machinery, and epigenetic therapeutics represent a novel approach to control infection, persistence, and the resulting recurrent disease. The histone methyltransferases EZH2 and EZH1 (EZH2/1) are epigenetic repressors that suppress gene transcription via propagation of repressive H3K27me3 enriched chromatin domains. However, while EZH2/1 are implicated in repression of herpesviral gene expression, inhibitors of these enzymes suppressed HSV primary infection in vitro and in vivo. Furthermore, these compounds blocked lytic viral replication following induction of HSV reactivation in latently infected sensory ganglia. Suppression correlated with the induction of multiple inflammatory, stress, and anti-pathogen pathways as well as enhanced recruitment of immune cells to in vivo infection sites. Importantly, EZH2/1 inhibitors induced a cellular antiviral state that also suppressed infection with DNA (hCMV, Adenovirus) and RNA (Zika virus) viruses. Thus, EZH2/1 inhibitors have considerable potential as general antivirals through activation of cellular antiviral and immune responses.
Inhibitors of the Histone Methyltransferases EZH2/1 Induce a Potent Antiviral State and Suppress Infection by Diverse Viral Pathogens.
Cell line, Treatment, Time
View SamplesPsoriasis is a chronic, debilitating, immune-mediated inflammatory skin disease. As IFN- is involved in many cellular processes, including activation of T cells and dendritic cells (DCs), antigen processing and presentation, cell adhesion and trafficking, and cytokine and chemokine production, IFN--producing Th1 cells were proposed to be integral to the pathogenesis of psoriasis. Recently, IFN- was shown to enhance IL-23 and IL-1 production by DCs and subsequently induce Th17 cells, important contributors to the inflammatory cascade in psoriasis lesions. To determine if IFN- indeed induces the pathways leading to the development of psoriasis lesions, a single intradermal injection of IFN- was administered to an area of clinically normal, non-lesional skin of psoriasis patients and biopsies were collected 24 hours later. Although there were no visible changes in the skin, IFN- induced molecular and histological features characteristic of psoriasis lesions. IFN- increased a number of differentially expressed genes in the skin, including many chemokines concomitant with an influx of T cells and inflammatory DCs. Furthermore, inflammatory DC products TNF, iNOS, IL-23, and TRAIL were present in IFN--treated skin. Thus, IFN-, which is significantly elevated in non-lesional skin compared to healthy skin, appears to be a key pathogenic cytokine that can induce the inflammatory cascade in psoriasis.
A single intradermal injection of IFN-γ induces an inflammatory state in both non-lesional psoriatic and healthy skin.
Disease, Disease stage
View SamplesAltered expression of microRNAs (miRNAs), an abundant class of small non-protein-coding RNAs that mostly function as negative regulators of protein-coding gene expression, is common in cancer. Here we analyze the regulation of miRNA expression in response to estrogen, a steroid hormone that is involved in the development and progression of breast carcinomas and that is acting via the estrogen receptors (ER) transcription factors. We set out to thoroughly describe miRNA expression, by using miRNA microarrays and real time RTPCR experiments, in various breast tumor cell lines in which estrogen signaling has been induced by 17-estradiol (E2). We show that the expression of a broad set of miRNAs decreases following E2 treatment in an ER-dependent manner. We further show that enforced expression of several of the repressed miRNAs reduces E2-dependent cell growth, thus linking expression of specific miRNAs with estrogen-dependent cellular response. In addition, a transcriptome analysis revealed that the E2-repressed miR-26a and miR-181a regulate many genes associated with cell growth and proliferation, including the progesterone receptor gene, a key actor in estrogen signaling. Strikingly, miRNA expression is also regulated in breast cancers of women who had received antiestrogen neoadjuvant therapy thereby showing an estrogen-dependent in vivo regulation of miRNA expression. Overall, our data indicates that the extensive alterations in miRNA regulation upon estrogen signalling pathway plays a key role in estrogen-dependent functions and highlights the utility of considering miRNA expression in the understanding of antiestrogen resistance of breast cancer.
Widespread estrogen-dependent repression of micrornas involved in breast tumor cell growth.
Cell line
View SamplesCharacterization of bacterial behavior in the microgravity environment of spaceflight is of importance towards risk assessment and prevention of infectious disease during long-term missions. Further, this research field unveils new insights into connections between low fluid-shear regions encountered by pathogens during their natural infection process in vivo, and bacterial virulence. This study is the first to characterize the global transcriptomic and proteomic response of an opportunistic pathogen that is actually found in the space habitat, Pseudomonas aeruginosa. Overall, P. aeruginosa responded to spaceflight conditions through differential regulation of 167 genes and 28 proteins, with Hfq identified as a global transcriptional regulator in the response to this environment. Since Hfq was also induced in spaceflight-grown Salmonella typhimurium, Hfq represents the first spaceflight-induced regulator across the bacterial species border. The major P. aeruginosa virulence-related genes induced in spaceflight conditions were the lecA and lecB lectins and the rhamnosyltransferase (rhlA), involved in the production of rhamnolipids. The transcriptional response of spaceflight-grown P. aeruginosa was compared with our previous data of this organism grown in microgravity-analogue conditions using the rotating wall vessel (RWV) bioreactor technology. Interesting similarities were observed, among others with regard to Hfq regulation and oxygen utilization. While LSMMG-grown P. aeruginosa mainly induced genes involved in microaerophilic metabolism, P. aeruginosa cultured in spaceflight adopted an anaerobic mode of growth, in which denitrification was presumably most prominent. Differences in hardware between spaceflight and LSMMG experiments, in combination with more pronounced low fluid shear and mixing in spaceflight when compared to LSMMG conditions, were hypothesized to be at the origin of these observations. Collectively, our data suggest that spaceflight conditions could induce the transition of P. aeruginosa from an opportunistic organism to potential pathogen, results that are of importance for infectious disease risk assessment and prevention, both during spaceflight missions and in the clinic.
Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen.
No sample metadata fields
View SamplesThe identity of cells that establish the hematopoietic microenvironment (HME) in human bone marrow (BM), and of skeletal ("mesenchymal") stem cells (SSCs) found in BM stroma, have long remained elusive. We show that MCAM/CD146-expressing, subendothelial cells in human BM stroma are both the self-renewing SSCs and the cells that transfer the HME at heterotopic sites upon transplantation.
Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment.
No sample metadata fields
View Samples