Local mRNA translation mediates the adaptive responses of axons to extrinsic signals but direct evidence that it occurs in mammalian CNS axons in vivo is scant. We developed an axon-TRAP-RiboTag approach in mouse that allows deep-sequencing analysis of ribosome-bound mRNAs in the retinal ganglion cell axons of the developing and adult retinotectal projection in vivo. The embryonic-to-postnatal axonal translatome comprises an evolving subset of enriched genes with axon-specific roles suggesting distinct steps in axon wiring, such as elongation, pruning and synaptogenesis. Adult axons, remarkably, have a complex translatome with strong links to axon survival, neurotransmission and neurodegenerative disease. Translationally co-regulated mRNA subsets share common upstream regulators, and novel sequence elements generated by alternative splicing that promote axonal mRNA translation. Our results indicate that intricate regulation of compartment-specific mRNA translation in mammalian CNS axons supports the formation and maintenance of neural circuits in vivo. Overall design: The profiling of ribosome-bound mRNAs in mouse retinal ganglion cell axons at 4 different developmental stages
On-Site Ribosome Remodeling by Locally Synthesized Ribosomal Proteins in Axons.
Cell line, Subject
View SamplesAkirin2 is an evolutionally conserved nuclear protein involved in the regulation of a set of inflammatory gene expression in various cell types.
Akirin2 is critical for inducing inflammatory genes by bridging IκB-ζ and the SWI/SNF complex.
Specimen part
View SamplesBackground: Moderate weight loss can ameliorate adverse health effects associated with obesity, reflected by an improved adipose tissue (AT) gene expression profile. However, the effect of rate of weight loss on the AT transcriptome is unknown.
Adipose tissue gene expression is differentially regulated with different rates of weight loss in overweight and obese humans.
Sex, Specimen part, Treatment, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Polycomb function during oogenesis is required for mouse embryonic development.
Specimen part, Treatment
View SamplesIn mammals, totipotent pre-implantation embryos are formed by fusion of highly differentiated oocytes and spermatozoa. Acquisition of totipotency concurs with remodeling of chromatin states of parental genomes (epigenetic reprogramming), changes in maternally contributed transcriptome and proteome, and zygotic genome activation. Genomes of mature germ cells are more proficient in supporting embryonic development than those of somatic cells. It is currently unknown whether transgenerational inheritance of chromatin states present in mature gametes underlies the efficacy of early embryonic development after natural conception. Here, we show that Ring1 and Rnf2, two core components of the Polycomb Repressive Complex 1 (PRC1), serve redundant gene regulatory functions during oogenesis that are required to support embryonic development beyond the two-cell stage. Numerous developmental regulatory genes that are established Polycomb targets in various somatic cell types are de-repressed in Ring1/Rnf2 double mutant (dm) fully grown germinal vesicle (GV) oocytes. Translation of tested aberrant maternal transcripts is, however, delayed until after fertilization. Exchange of maternal pro-nuclei between control and Ring1/Rnf2 maternally dm early zygotes demonstrates an essential role for Ring1 and Rnf2 during oogenesis in defining cytoplasmic and nuclear maternal contributions that are both essential for proper initiation of embryonic development. A large number of genes up-regulated in Ring1/Rnf2 dm GV oocytes harbor PRC2-mediated histone H3 lysine 27 trimethylation (H3K27me3) in spermatozoa and in embryonic stem cells (ESCs), and are repressed during normal oogenesis and early embryogenesis. These data strongly support the model that Polycomb acts in the female and male germline to silence differentiation inducing genes and to program chromatin states, thereby sustaining developmental potential across generations.
Polycomb function during oogenesis is required for mouse embryonic development.
Specimen part
View SamplesIn mammals, totipotent pre-implantation embryos are formed by fusion of highly differentiated oocytes and spermatozoa. Acquisition of totipotency concurs with remodeling of chromatin states of parental genomes (epigenetic reprogramming), changes in maternally contributed transcriptome and proteome, and zygotic genome activation. Genomes of mature germ cells are more proficient in supporting embryonic development than those of somatic cells. It is currently unknown whether transgenerational inheritance of chromatin states present in mature gametes underlies the efficacy of early embryonic development after natural conception. Here, we show that Ring1 and Rnf2, two core components of the Polycomb Repressive Complex 1 (PRC1), serve redundant gene regulatory functions during oogenesis that are required to support embryonic development beyond the two-cell stage. Numerous developmental regulatory genes that are established Polycomb targets in various somatic cell types are de-repressed in Ring1/Rnf2 double mutant (dm) fully grown germinal vesicle (GV) oocytes. Translation of tested aberrant maternal transcripts is, however, delayed until after fertilization. Exchange of maternal pro-nuclei between control and Ring1/Rnf2 maternally dm early zygotes demonstrates an essential role for Ring1 and Rnf2 during oogenesis in defining cytoplasmic and nuclear maternal contributions that are both essential for proper initiation of embryonic development. A large number of genes up-regulated in Ring1/Rnf2 dm GV oocytes harbor PRC2-mediated histone H3 lysine 27 trimethylation (H3K27me3) in spermatozoa and in embryonic stem cells (ESCs), and are repressed during normal oogenesis and early embryogenesis. These data strongly support the model that Polycomb acts in the female and male germline to silence differentiation inducing genes and to program chromatin states, thereby sustaining developmental potential across generations.
Polycomb function during oogenesis is required for mouse embryonic development.
Treatment
View SamplesMuscle biopsy samples were obtained from two groups of male subjects prior to endurance training. The samples were used to predict training responses.
Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans.
Sex
View SamplesMuscle biopsy samples from healthy male subjects at the baseline belonging to either <29y or >59y age range. These samples were used to design a prototype of multi-tissue molecular diagnostic of healthy physiological age.
Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans.
Sex, Age, Specimen part
View SamplesFunctional discrimination between normal centroblast and centrocyte obtained from human inflamed tonsils after cell sorting.
CXCR4 expression functionally discriminates centroblasts versus centrocytes within human germinal center B cells.
Specimen part
View SamplesTo explore events that govern the differentiation of human nave B cells (NBCs) into memory B cells and plasma cells (PCs), we designed an in vitro 2-step culture model leading non-switched NBC precursors to differentiate into two cell compartments: CD20loCD38hi and CD20+CD38+.
IL-2 requirement for human plasma cell generation: coupling differentiation and proliferation by enhancing MAPK-ERK signaling.
Specimen part, Subject, Time
View Samples